numerical solution of the rosenau equation using quintic collocation b-spline method
نویسندگان
چکیده
in this paper , the quintic b-spline collocation scheme is employed to approximate numerical solution of the kdv-like rosenau equation . this scheme is based on the crank-nicolson formulation for time integration and quintic b-spline functions for space integration . the unconditional stability of the present method is proved using von- neumann approach . since we do not know the exact solution of the nonlinear kdv-like rosenau equation , a comparison between the numerical solutions on a coarse mesh and those on a refine mesh is made to show the efficiency of discussed method.
منابع مشابه
Numerical solution of General Rosenau-RLW Equation using Quintic B-splines Collocation Method
In this paper a numerical method is proposed to approximate the solution of the nonlinear general Rosenau-RLW Equation. The method is based on collocation of quintic B-splines over finite elements so that we have continuity of the dependent variable and its first four derivatives throughout the solution range. We apply quintic B-splines for spatial variable and derivatives which produce a syste...
متن کاملNumerical Solution of One-dimensional Telegraph Equation using Cubic B-spline Collocation Method
In this paper, a collocation approach is employed for the solution of the one-dimensional telegraph equation based on cubic B-spline. The derived method leads to a tri-diagonal linear system. Computational efficiency of the method is confirmed through numerical examples whose results are in good agreement with theory. The obtained numerical results have been compared with the results obtained b...
متن کاملB-SPLINE COLLOCATION APPROACH FOR SOLUTION OF KLEIN-GORDON EQUATION
We develope a numerical method based on B-spline collocation method to solve linear Klein-Gordon equation. The proposed scheme is unconditionally stable. The results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. Easy and economical implementation is the strength of this approach.
متن کاملSeptic B-Spline Collocation Method for Numerical Solution of the Kuramoto-Sivashinsky Equation
In this paper the Kuramoto-Sivashinsky equation is solved numerically by collocation method. The solution is approximated as a linear combination of septic B-spline functions. Applying the Von-Neumann stability analysis technique, we show that the method is unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions....
متن کاملExponential B-spline collocation method for numerical solution of the generalized regularized long wave equation
The aim of the present paper is to present a numerical algorithm for the time-dependent generalized regularized long wave equation with boundary conditions. We semi-discretize the continuous problem by means of the Crank–Nicolson finite difference method in the temporal direction and exponential B-spline collocation method in the spatial direction. The method is shown to be unconditionally stab...
متن کاملCubic B-spline Collocation Method for Numerical Solution of the Benjamin-Bona-Mahony-Burgers Equation
In this paper, numerical solutions of the nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equation are obtained by a method based on collocation of cubic B-splines. Applying the Von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The L∞ and L2 ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
iranian journal of science and technology (sciences)ISSN 1028-6276
دوره 39
شماره 3 2015
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023